Devices to Measure Gd in Different Organs

Fiona McNeill

Conflicts of Interest

No conflicts of interest reported.

Measurement of Gd in kidney, liver and human muscle using in vivo neutron activation analysis

10 in vivo measurements:

subjects measured before, immediately after, and 2-7 days post injection/ MRI (Gadovist).

Phantom detection limits:

7.2 \pm 0.3 ppm kidney, 3.0 \pm 0.1 ppm liver, and 2.33 \pm 0.08 ppm lower leg muscle McMaste

Measurement of Gd in bone using in vivo x-ray fluorescence

K X-ray fluorescence (K-XRF) system:

5 GBq ¹⁰⁹Cd excitation source 88 keV

Detect Gd K α x-rays 42-49 keV

Validated against ICP-MS using autopsy samples

30 in vivo measurements performed to date

15 Gd exposed, 15 control (11 in each group reported)

XRF of Gd in bone: In Vivo Data

Exposed >
control

2 µg Gd/g bone
mineral
p=0.05 normal
p=0.01 IVWM

A significant positive slope of 0.39 \pm 0.14 $\,\mu g$ Gd/g bone mineral per cc of injected GBCA (Gadovist®). (p=0.014)

* Gd concentrations that are each significantly higher than the control group mean (p<0.05).

